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New Type of Exactly Solvable Potential 
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It is shown that, starting from an exactly solvable potential and making use of 
the theory of a system of coupled differential equations, it is possible to construct 
a new type of second-generation potential which is also exactly solvable. 

1. I N T R O D U C T I O N  

A potential V(x) is exactly solvable when the set of  eigenfunctions { ~n } 
and eigenvalues {En} of  the equation 

d 2 
nt~n = Ent~, n - dx 2 V(x) (1) 

can be reached entirely by algebraic means. 
It will be shown in this paper that each exactly solvable potential in 

turn may generate another set of solvable potentials V~(x), where the number 
n refers to the In) eigenstate of the original potential V(x). The  present work 
uses some recent results obtained from the investigation of  a system of 
coupled differential equations of  first order (Cao, 1994), which will be adapted 
to the conditions of the subject under consideration. 

Therefore, for clarity, it seems useful to begin this presentation with a 
brief review of some features of this theory which will be extensively imple- 
mented in the discussion below. 

As a first application, a simple discussion shows that the conventional 
supersymmetrization SU(2) turns out to be one of  the consequences of  the 
present approach. 

A second application will be discussed in the Appendix with a simple 
example which underlines how the above results can be handled in practice. 
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2. T H E  SYSTEM OF C O U P L E D  D I F F E R E N T I A L  EQUATIONS 

Consider the matrix equation 

~b' + Fd~ = 0 

~b = (t~, qb2) +, qb' =d__~_~dr, F = (  u'd2 d,)142 

(2) 

Ui, d i may be any analytic functions. The theory consists in defining a mixing 
function X, qb~ = -Xqb2, which enables one to write explicitly the system 
(2) as 

6~+ + u ~ -  42=0;  t ~  + (U 2 -- d2X)t~2 --- 0 (3) 

Compatibility of these two equations requires that the quantity X must be a 
solution of the following first-order differential equation: 

dl = X' - (u2 - u l ) X -  d2X 2 (4) 

Differentiation of the system, on the other hand, leads to a system of two 
coupled differential equations of second order: 

+'1' - (u~ - u] + d jd2)d~j  + ( d l  - d j ( u l  + u2))~b2 = 0 

qb~ - ( u  2 - u I + d l d 2 ) q b  2 + (dl2 -- d2(Ul + uz))~bx = 0 
(5) 

The set of three equations (4), (5) is sufficient for the needs of the 
ensuing development. Note, however, that the system of coupled equations 
of type (5) had already been investigated previously from a different point 
of view where a theorem on the complete separation of the equations (decou- 
pling) was formulated setting up some specific constraints (Cao, 1981). In 
the present work, we shall nevertheless exclude these possibilities and con- 
sider instead another construction in which one of the coupling terms (dl or 
d2) is equal to zero. As the case ux :~ u2 does not in fact bring anything new 
in the discussion below, we shall therefore assume that 

ul = u 2 = u ;  d 2 = 0  (6) 

Theorem L If the potential V(x) = u 2 - u I is exactly solvable, then to 
any couple of its eigenfunction I m), In) (m --> n) it is always possible to 
associate a system of coupled equations of  type (2) with constraint (6). 

Proof. It will be more convenient to proceed in two steps. 
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(i) Consider first the couple (m, n = 0); there is no loss of generality 
by assuming E0 = 0. Using now relation (4) and the definition of the mixing 
function, write the first equation of (5) as 

1 
+7,m - -  (U 2 - -  u l ) + l , m  = ~ (X;~ -- 2 u X ' ) + l , m  

Let Em be the eigenvalue corresponding to the state I m), and assume 
that Xm is solution of the following second-order differential equations: 

x; ;  - 2 u X "  - F.mX., = 0 ( 7 )  

Then 

+7,m - -  V+~,m = Em+l,m; 4'~ --  v~2  = 0 

which clearly indicates that the second component corresponds to the zero 
state, while the first one represents the I m) state of the same potential V(x). 

(ii) Generalizing to the couple (m, n) (m > n), the same reasoning 
remains valid, but with a slight modification. Write system (1) in the form 

~b' + F, Ab = 0 (8) 

where F~ is defined as 

x'~ d.,.. ,1 Fo=u-~ 
0 u--~-s 

X. is the solution of equation (7) as discussed above and the new coupling 
term is dm,., with obvious meaning of the indices. 

Introduce now another mixing function hm~ such that d01,m = --Xm,.d02,.- 
A compatibility condition similar to (4) applied to this case leads to dm,n = 
X'n. Therefore, if the mixing function hm,. is a solution of the equation 

- X'~X' -A,nnXm,,, = 0 (9) x~,,. - 2 u x~] " ' 

Am,. is a constant parameter; hence for the two components qbl,m,, and 
~b2,. we may write 

f~lt ,m,n - -  Vn(~) l  . . . .  : Am,ndPl  . . . . .  ; qb~, n - VndP2,n = 0 

in which 

vn (u 
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Equation (9) is solvable with solution 

Xm 
x,.,. x .  (10) 

and Am,. = Em - E.. The simplest way to see this is to proceed by substituting 
(10) in (9) and, after simplification, noting that 

- x - .  ( x ~  - h ' .  - 2 u = ( X "  - 2 u X ' . , )  - 2 u X ' )  

Using now relation (7) hence confirms the above assertion. 
The analytical form of the eigenfunctions is 

+,,m,. --- - x..,.+2,. (+z,.=X. exp-fudx) (11) 

with eigenvalue spectrum {Em - E. }. This completes the proof of the theorem, 
which may lead to useful applications in physics. We shall now examine one 
of them by revisiting the conventional concept of supersymmetrization, SU(2). 

3. SUPERSYMMETRIZATION 

Consider now two systems of coupled equations of the preceding type, 
i.e., type (2): 

- -  - - n  
qb' + Fqb = 0; qb' + Fqb = 0 

U ; = ( + 2 ,  ~ b 0 ) + ;  F = 

(12) 

u, d, d may be any analytic functions. First note that the second system in 
(12) is exactly the same as the case discussed above in part (i) of the 
proof, which means that all the results obtained there can be transposed here 
without difficulty. 

Thus the new situation comes from the first system, which requires the 
definition of a new mixing function Y 

+~ = - r + 0  

From the condition of compatibility (4), we have here 

7l = Y '  - 2 u Y  (13) 

Hence, if the mixing function Y is solution of the equation 

Y",, - 2uY 'm  - (2u' + B,n)Ym = 0 (14) 
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Bm being a constant parameter, then the final form of the first equation in 
(5) can be written as 

--tt 
(~l,m - -  V~bl,m = nm$1,m ( 1 5 )  

w i t h V = u  2 + u  1. 

Returning now to the equation (7), by differentiation we have 

X~ '  - 2 u X "  - (2u' + E , , ) X "  = 0 (16) 

The two equations (14) and (16) are identical if 

(a) Ym = aXn', et constant; (b) B., = E.  (17) 

On the other hand, for the zero state, n = 0, X0 = I, so that the eigenfunction 
~b~,0 is not defined. The only possibility is to set m = n + 1, Bn+l = En, or, 
in other words, the quantity Bm can be regarded as the eigenvalue correspond- 
ing to the state ~,m for the potential V with 

( ~bl,m --- Ym~b0 qb0 = exp - u dr, 

The present method therefore leads to the construction of another exactly 
solvable potential V from the former one V. 

This situation presents a striking similarity with supersymmetrization 
[in the sense of Witten (1981)], which itself is based on the graded Lie 
algebra which accounts for the nilpotency of  two operators Q, Q+ (i.e., Q2 
= Q+2 = 0) 

o); (o 
Q+ = 0 ; A +  = --dx - + u ( x )  

with the Hamiltonian 

H = = {Q, Q+}; H -  + - (u 2 + u') 
d x  

The two components ~bl, ~b2 are connected by the operators A -+ 

A-d~2  = EI/2~l, A+~l = -E1/2~b2 (E: eigenvalue) 

The equivalence between the two approaches may be appreciated with the 
following remark: 

d~, = - r r  = A - X + o  = ~ + -~o - u X + o  
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since qb~/~bo = u; hence 

- Y+0 = E-~ X'60 o r  Y = o t X '  (or  = - lIE It2) 

as predicted in (17). 
This result in fact can be reached as revealing an equivalence between 

the present approach and conventional supersymmetrization and may provide 
a useful tool to get a deeper insight from a more general point of view, as 
will be seen in the discussion below. 

Theorem II. If the potential V = u 2 - u 1 is exactly solvable, then it is 
always possible, corresponding to any eigenstate In) of V, to construct a set 
of exactly solvable potentials of second generation V,. 

Proof The meaning of the term V, will be clarified below; we begin 
by dealing with the mathematical aspect of the theorem. Consider two other 
systems of coupled equations: 

$ '  + F .+  = 0, 6 '  + r . +  = 0 

_ x,) ] 
=(~,,4,o)+; P.= ('-x.]  ( "g> 

o u X . ) l  

+ = ((1,2, +0); 

x -  

0 

X., dm~, are already defined above; the new coupling terms din,., may be any 
analytic functions depending on the couple of indices (m, n). 

Note first that the second system in (18) is identical to the one discussed 
in part (ii) of the proof of Theorem I, so that we have 4)2 = --km,.+O and 
the equation (9) for k,.,. remains valid here. To deal with the first system, 
introduce a new mixing function km~, defined as ~l,,.,. = -k,.,.qbo and follow 
exactly the same reasoning. Compatibility conditions similar to (4) and (13) 
lead to the condition 

n - -  

din,. = k ' , .  - 2 u -  k.,,. (19) 
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Therefore, Cm,. being a constant parameter, if X is a solution of the 
second-order equation 

[( , ] - - t t  ~ - - t  _ _  

~kmn -- 2 U -- x n  Xm, n -- 2 U' ~Xrnl ~ --~ fm,n ~m,n -~-. O ( 2 0 )  
' \x.// 

then the Schr6dinger equation corresponding to the first system of  (18) can 
be written as (v .  = u - X ' / X . )  

- -  t - -  +~ . . . .  - (v~ + Vn)+~,m.n = C.,.n~,.,n.. 

To solve (20), return again to (9), so that after differentiation 

" - - ~  " - + A m , .  X ' , .  = 0 ( 2 1 )  X,.,. 2 u X, X . , , . -  2 u'  

which is identical to (20) and provides a relationship between X and X if 

(a) h,.,. = [3X',., [3 = const; (b) C,.,. = Am,. 

Note that for m = n, X.,. = 1, so that ~,,.,. is not defined and we must set 
m = n + 1. The eigenfunctions +l,,.,., +2,,.~ are 

~, .... --~ h.,,.+0, +2,,.,. = X,.,.+o (22) 

Making explicit the analytical form of V. and making use of (7), we can 
write the final form of  V. as 

V / . = u  2 + u '  + 2 ~ [ _ x . - Z u  (23) 

"~7,m,n - -  "gn-~l,m,n = (Era - 2En)"~i ,m,n  

We interpret this as follows: 

�9 V. is an exactly solvable potential with eigenspectrum { E,. - 2E. } 
and eigenfunctions defined by (22). 

�9 For n = 0 the potential V0 becomes identical to P = u z + u ~, revealing 
that, in the context of  the present theory, supersymmetrization can 
be regarded as a special case corresponding to n = 0. 

�9 For each e.s. potential V(x) and corresponding to every eigenstate 
In), it is possible to construct a second generation e.s. potential V.; 
the meaning of  this term refers to the presence of the index n. 

�9 The domain of definition of V. may be more restricted and depends 
on the analytical structure of X., since n represents the number of 
nodes in +2,. corresponding to possible singularities for Vn- 
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Conversely, it can be shown that the function ~bl .... given by (22) is 
effectively an eigenfunction of the potential V, with eigenvalue E m -  2En. 

In fact, we may write 
- .  
+,.m.. = _ _  _ 2v. X'.. + __X~," 
+,.m.. +o x',,. x,'... 

where ~b~/+o = u 2 - u I + E. and successive use of (14) and (16) effectively 
leads to (23). 

4. CONCLUSION 

The theory of a system of two coupled equations of type (2) with 
constraint (6) enables one to generate three types of exactly solvable 
potentials: 

�9 The "parent" potential V = u 2 - u'. 
�9 Its partner V = u 2 + u'. Their respective eigenspectra show double 

degeneracy, except for the case n = 0. 
�9 The second-order generation potential, for which the eigenspectrum 

is related to the original one {E,, - 2E,}. 

A simple example will be given in the Appendix in order to show how 
the method can be implemented in practice. 

There is in fact a fourth type of potential which is not discussed in this 
work, since they are not exactly, but only quasi-exactly solvable, and require a 
different analytical treatment. This question will be presented in another paper. 

Finally, it may also be interesting to speculate on whether this process 
of filiation could be extended to higher order generations. This is discussed 
in Appendix B. 

A P P E N D I X  A 

Let u = A cotanh x, where A is an arbitrary constant. For our purpose 
it will be sufficientio consider the special case A = - 1/2, for which equation 
(7) reduces to the usual Legendre equation, 

X" + cotanh x X;, + EflCn = 0 

with solution X, = P,(cosinh x), where P,  are Legendre polynomials, and 
E,, = - n ( n  + 1), n = 0, 1, 2 . . . . .  The potentials V and V are 

3 / 
I ; V= l +  

sinh2x 4 

while the second-generation potential V. is given in (23). Their analytical 
form and eigenspectrum are summarized in Table I for the first values of n. 
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T a b l e  I. S e c o n d - G e n e r a t i o n  Poten t ia l  V .  a n d  E i g e n s p e c t r u m  a 

1 4 7 3  

,, P. cm,. 

m(m+ 1 ) -  4,  m = 2 , 3  . . . .  

re(m+ 1 ) -  12, m = 3 , 4  . . . .  

1 I + si 2----'-~ c o s i n h ~  + 4 

2 1(1 + ~ ] +  12P(z) 

Z 2 
P(z) = (3Z2 _ 1) 2 (9Z 2 - 7) 

3 1(1 + ~ l + 2 p ( z  ) re(m+ 1,-24, m=4,5 . . . .  

1 
P(z) Z2(5Z2 1) 2 (300Z 6 -- 375Z 4 + 108Z 2 -- 9) 

z = cos inh  x. 

Note that for the case A :/: -1 /2 ,  it can be shown that the solution of  
equation (7) can be expressed in terms of a hypergeometric series which 
involves A, so that V. depends now on two parameters n and A, i.e., 
V(x,  A) . .  For instance, with n = 1, we find 

A ( A  + 1) 2 
V(x,A)l = A 2 + 2(1 - 2A) + 

sinh2x cosinh2x 

Cm, l = m 2 -  2 A ( m  - 2 ) -  (A 2 + 2) 

It can be verified that for the special case A = -1 /2 ,  this agrees with 
the result given in Table I up to a constant. 

APPENDIX B 

A third-order generation potential involves two indices n, m which 
correspond to the I n), I m) eigenstates of  the parent potential V and will be 
denoted by Vm,n- 

Consider again the system (18) in which the couple F., F .  are replaced 
by the couple Fm,n and Fm,n, and dm,n' dm,n by ds ..... ds,m,n: 

I - -  ~X:  Av dsmn 
\ X  n XmJ "" . 

o " \x. x, . /I  

_(x:+ ) e,m. 

o . \xo+  
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Introduce the mixing functions ks,,.,n and k . . . . .  such that 

$1,s,m,n = --~s,m,nf~O, f~2,s,m,n : --~ks . . . .  f~O 

Similar to (9), the second-order differential equation for k~,m,n is 

m t 
k "  - 2 u - + ks,m,n - B ~ m n k ~ m n  = 0 ..... n \ X n  . . . . . .  

B~,m,. being a constant parameter. 
It can then be shown that its solution is 

X,~ 

)~s,m,n -- 
XmXn 

The algebra here become fairly cumbersome and will not be displayed in 
this Appendix. We quote instead the final result, which is, however, simple: 

Vmn=U +U'+2 2 X',[X; ) 
" i=m,n Xi  \ X i  - 2 u  

Bs,m,n = Es - 2 E Ei 
i=m,n 

indicating that extension to potentials of higher order generations is also 
possible. 
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